Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2321664

ABSTRACT

GCSF prophylaxis is recommended in patients on chemotherapy with a >20% risk of febrile neutropenia and is to be considered if there is an intermediate risk of 10−20%. GCSF has been suggested as a possible adjunct to immunotherapy due to increased peripheral neutrophil recruitment and PD-L1 expression on neutrophils with GCSF use and greater tumour volume decrease with higher tumour GCSF expression. However, its potential to increase neutrophil counts and, thus, NLR values, could subsequently confer poorer prognoses on patients with advanced NSCLC. This analysis follows on from the retrospective multicentre observational cohort Spinnaker study on advanced NSCLC patients. The primary endpoints were OS and PFS. The secondary endpoints were the frequency and severity of AEs and irAEs. Patient information, including GCSF use and NLR values, was collected. A secondary comparison with matched follow-up duration was also undertaken. Three hundred and eight patients were included. Median OS was 13.4 months in patients given GCSF and 12.6 months in those not (p = 0.948). Median PFS was 7.3 months in patients given GCSF and 8.4 months in those not (p = 0.369). A total of 56% of patients receiving GCSF had Grade 1−2 AEs compared to 35% who did not receive GCSF (p = 0.004). Following an assessment with matched follow-up, 41% of patients given GCSF experienced Grade 1−2 irAEs compared to 23% of those not given GCSF (p = 0.023). GCSF prophylaxis use did not significantly affect overall or progression-free survival. Patients given GCSF prophylaxis were more likely to experience Grade 1−2 adverse effects and Grade 1−2 immunotherapy-related adverse effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug-Related Side Effects and Adverse Reactions , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Progression-Free Survival , Immunotherapy/adverse effects , Retrospective Studies
2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-2288966

ABSTRACT

Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations. Genetic predisposition, environmental factors, and immune dysfunction all contribute to the pathogenesis of psoriasis with host-microbe interaction governing the progression of this disease. Emerging evidence has indicated that infection is an environmental trigger for psoriasis and plays multiple roles in its maintenance as evidenced by the frequent association between guttate psoriasis onset and acute streptococcal infection. Different infectious factors act on immune cells to produce inflammatory cytokines that can induce or aggravate psoriasis. In addition to bacterial infections, viral and fungal infections have also been shown to be strongly associated with the onset or exacerbation of psoriasis. Intervention of skin microbiota to treat psoriasis has become a hot research topic. In this review, we summarize the effects of different infectious factors (bacteria, viruses, and fungi) on psoriasis, thereby providing insights into the manipulation of pathogens to allow for the identification of improved therapeutic options for the treatment of this condition.


Subject(s)
Immune System Diseases , Psoriasis , Streptococcal Infections , Humans , Immune System Diseases/complications , Immunotherapy/adverse effects , Psoriasis/drug therapy , Streptococcal Infections/microbiology , Streptococcus
3.
Cell Death Dis ; 14(1): 49, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2211944

ABSTRACT

Despite more than 2 years having elapsed since the onset of SARS-CoV-2 pandemic, a level of hesitation around increased SARS-CoV-2 vaccine toxicity in cancer patients receiving immunotherapy (IO) remains. This hesitation stems from the idea that IO agents could elicit an overwhelming immune stimulation post vaccination and therefore increase the risk of vaccine-related toxicity. The aim of our study was to explore serological responses to SARS-CoV-2 vaccination in patients treated with IO and describe the level of immune stimulation using parameters such as blood cytokines, autoantibody levels and immune related adverse events (irAEs) post vaccination. Fifty-one evaluable patients were enrolled in this longitudinal study. Absolute levels and neutralization potential of anti-SARS-CoV-2 antibodies were not significantly different in the IO group compared to non-IO. Chemotherapy adversely affected seroconversion when compared to IO and/or targeted treatment. Following vaccination, the prevalence of grade ≥2 irAEs in patients treated with IO was not higher than the usual reported IO toxicity. We report, for the first time, that anti-SARS-CoV-2 vaccination, elicited the generation of five autoantibodies. The significantly increased autoantibodies were IgM autoantibodies against beta-2 glycoprotein (p = 0.02), myeloperoxidase (p = 0.03), nucleosome (p = 0.041), SPLUNC2 (p < 0.001) and IgG autoantibody against Myosin Heavy Chain 6 (MYH6) (p < 0.001). Overall, comprehensive analysis of a small cohort showed that co-administration of SARS-CoV-2 vaccine and IO is not associated with increased irAEs. Nevertheless, the detection of autoantibodies post anti-SARS-CoV-2 vaccination warrants further investigation (NCT03702309).


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19 Vaccines/adverse effects , Longitudinal Studies , COVID-19/prevention & control , SARS-CoV-2 , Immunotherapy/adverse effects , Vaccination , Autoantibodies , Neoplasms/drug therapy
5.
Front Immunol ; 13: 1022732, 2022.
Article in English | MEDLINE | ID: covidwho-2198874

ABSTRACT

Vaccination against SARS-CoV-2 has been successful in protecting patients with cancer from severe infections, but how immune responses against COVID-19 vaccination interact with those elicited during cancer immunotherapy has not been fully described. Immune checkpoint blockade (ICB) disrupts inhibitory pathways in immune cells to improve function and induce tumor immunity but can often cause serious immune related adverse events (IRAEs). Because COVID-19 vaccination and ICB both boost immune responses, it is imperative to understand if combining these regimens causes synergistic enhancement of the immune system. Specifically, whether ICB impacts anti-vaccine immunity in previously vaccinated patients is important since a large percentage of newly diagnosed cancer patients eligible for immunotherapy will have already been vaccinated against COVID-19. To address this, we investigated the influence of ICB on SARS-CoV-2-spike protein (SP) antibody titers and T cell responses in cancer patients previously vaccinated against COVID-19. Human blood samples were collected from 29 vaccinated patients and 12 unvaccinated control patients at baseline (prior to ICB) and following two rounds of ICB infusion. Anti-SARS-CoV-2-SP IgG titers and T cell responses were quantified. Compared to responses at baseline, there was no significant difference in these immune responses after immunotherapy in vaccinated individuals (P=0.4583, P=0.4571, respectively). We interpret these results as evidence that ICB immunotherapy does not significantly enhance SARS-CoV-2-specific antibody titers or T cell responses. Although our study lacks corresponding IRAE rates, the results provide humoral and cellular immunological data that support recent reports documenting the clinical safety and efficacy of COVID-19 vaccination in patients receiving ICB. Additional longitudinal prospective studies, such as the VOICE study (ClinicalTrials.gov identifier NCT04715438) and CAPTURE study (ClinicalTrials.gov identifier NCT03226886), are warranted and will provide broader safety and immunological data defining the effect of systemic cancer therapies on COVID-19 immunity.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , Immune Checkpoint Inhibitors/adverse effects , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Prospective Studies , Immunotherapy/adverse effects , Neoplasms/therapy , Antibodies, Viral , Immunoglobulin G , Immunity
6.
Nat Rev Immunol ; 22(2): 85-96, 2022 02.
Article in English | MEDLINE | ID: covidwho-2133458

ABSTRACT

A paradigm shift has recently occurred in the field of cancer therapeutics. Traditional anticancer agents, such as chemotherapy, radiotherapy and small-molecule drugs targeting specific signalling pathways, have been joined by cellular immunotherapies based on T cell engineering. The rapid adoption of novel, patient-specific cellular therapies builds on scientific developments in tumour immunology, genetic engineering and cell manufacturing, best illustrated by the curative potential of chimeric antigen receptor (CAR) T cell therapy targeting CD19-expressing malignancies. However, the clinical benefit observed in many patients may come at a cost. In up to one-third of patients, significant toxicities occur that are directly associated with the induction of powerful immune effector responses. The most frequently observed immune-mediated toxicities are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This Review discusses our current understanding of their pathophysiology and clinical features, as well as the development of novel therapeutics for their prevention and/or management.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Antigens, CD19 , Cytokine Release Syndrome/etiology , Humans , Immunotherapy/adverse effects , Immunotherapy, Adoptive/adverse effects , Neoplasms/drug therapy , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Receptors, Antigen, T-Cell/genetics
7.
Nat Cancer ; 3(9): 1039-1051, 2022 09.
Article in English | MEDLINE | ID: covidwho-1900671

ABSTRACT

Patients with cancer frequently receive immune-checkpoint inhibitors (ICIs), which may modulate immune responses to COVID-19 vaccines. Recently, cytokine release syndrome (CRS) was observed in a patient with cancer who received BTN162b2 vaccination under ICI treatment. Here, we analyzed adverse events and serum cytokines in patients with 23 different tumors undergoing (n = 64) or not undergoing (n = 26) COVID-19 vaccination under ICI therapy in a prospectively planned German single-center cohort study (n = 220). We did not observe clinically relevant CRS (≥grade 2) after vaccination (95% CI 0-5.6%; Common Terminology of Adverse Events v.5.0) in this small cohort. Within 4 weeks after vaccination, serious adverse events occurred in eight patients (12.5% 95% CI 5.6-23%): six patients were hospitalized due to events common under cancer therapy including immune related adverse events and two patients died due to conditions present before vaccination. Despite absence of CRS symptoms, a set of pairwise-correlated CRS-associated cytokines, including CXCL8 and interleukin-6 was >1.5-fold upregulated in 40% (95% CI 23.9-57.9%) of patients after vaccination. Hence, elevated cytokine levels are common and not sufficient to establish CRS diagnosis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Neoplasms , COVID-19 Vaccines/adverse effects , Cohort Studies , Cytokine Release Syndrome , Cytokines , Humans , Immune Checkpoint Inhibitors , Immunotherapy/adverse effects , Interleukin-6 , Neoplasms/drug therapy , Vaccination
8.
Immunotherapy ; 14(12): 915-925, 2022 08.
Article in English | MEDLINE | ID: covidwho-1892545

ABSTRACT

Patients with cancer have a higher risk of severe COVID-19, and expert consensus advocates for COVID-19 vaccination in this population. Some cases of autoimmune hepatitis have been described after the administration of COVID-19 vaccine in the people in apparently good health. Immune checkpoint inhibitors (ICIs) are responsible for a wide spectrum of immune-related adverse events (irAEs). This article reports a case of hepatitis and colitis in a 52-year-old woman who was undergoing immunotherapy and was HBV positive 10 days after receiving the first Pfizer-BioNTech COVID-19 vaccine dose. Because both ICIs and the COVID-19 vaccines stimulate the immune response, the authors hypothesize that these vaccines may increase the incidence of irAEs during ICI treatment. There is a complex interplay between the immune-mediated reaction triggered by the vaccination and PD-L1 co-administration.


Patients with cancer have a higher risk of severe COVID-19, and expert consensus advocates for COVID-19 vaccination in this population. Some reports have described autoimmune hepatitis after the administration of COVID-19 vaccine. It is difficult, however, to establish a causal relationship between COVID-19 vaccination and autoimmune hepatitis. This article reports a case of hepatitis and colitis in a 52-year-old woman with lung cancer who was undergoing immunotherapy and was was found to be HBV positive 10 days after her first Pfizer-BioNTech COVID-19 vaccine dose. Because both immunotherapy and COVID-19 vaccines stimulate the immune response, the authors hypothesize that these vaccines may increase the incidence of immune-related side effects.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 Vaccines , COVID-19 , Hepatitis , Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , BNT162 Vaccine , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Female , Hepatitis/etiology , Humans , Immunologic Factors/therapeutic use , Immunotherapy/adverse effects , Middle Aged , SARS-CoV-2 , Vaccination/adverse effects
9.
Br J Nurs ; 31(8): 414-420, 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1791705

ABSTRACT

This article discusses the implementation and development of a centralised immuno-oncology service. As the indications and licensing of oncological immune checkpoint inhibitors (ICIs) expanded rapidly, they brought with them increasing challenges. The article evaluates the impact of an immuno-oncology service, focusing on the following areas: admission rates due to immune-related adverse events (irAEs), number of bed days occupied due to immunotherapy toxicity and the incidence of Grade 3 and 4 (severe and life-threatening) irAEs. The article will also give an overview of patients requiring acute and subsequent management of toxicity as a percentage of the overall patients commenced on immunotherapy. The ultimate aim of the article is to highlight the importance of toxicity management and the overall benefits of a immuno-oncology service. The article will also discuss the impact of COVID-19 on the immuno-oncology service, highlighting the ways in which the team has adapted to the current environment to ensure high standards of patient care have been maintained.


Subject(s)
COVID-19 , Neoplasms, Second Primary , Neoplasms , Humans , Immunotherapy/adverse effects , Medical Oncology , Neoplasms/etiology , Neoplasms/therapy , Neoplasms, Second Primary/etiology , United Kingdom
10.
Thorax ; 77(3): 304-311, 2022 03.
Article in English | MEDLINE | ID: covidwho-1551065

ABSTRACT

Immune checkpoint inhibitors (ICIs) have revolutionised cancer treatment. However, immune-related adverse events (irAEs) are a common side effect which can mimic infection. Additionally, treatment of irAEs with corticosteroids and other immunosuppressant agents can lead to opportunistic infection, which we have classed as immunotherapy infections due to immunosuppression. However, emerging reports demonstrate that some infections can be precipitated by ICIs in the absence of immunosuppressive treatment, in contrast to the majority of reported cases. These infections are characterised by a dysregulated inflammatory immune response, and so we propose they are described as immunotherapy infections due to dysregulated immunity. This review summarises the rapidly emerging evidence of these phenomena and proposes a new framework for considering infection in the context of cancer immunotherapy.


Subject(s)
Neoplasms , Opportunistic Infections , Humans , Immune Checkpoint Inhibitors , Immunosuppressive Agents/adverse effects , Immunotherapy/adverse effects , Neoplasms/drug therapy , Opportunistic Infections/chemically induced
11.
Br J Cancer ; 126(1): 1-3, 2022 01.
Article in English | MEDLINE | ID: covidwho-1526066

ABSTRACT

The combination of COVID-19 vaccination with immunotherapy by checkpoint inhibitors in cancer patients could intensify immunological stimulation with potential reciprocal benefits. Here, we examine more closely the possible adverse events that can arise in each treatment modality. Our conclusion is that caution should be exercised when combining both treatments.


Subject(s)
BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Neoplasms/therapy , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Combined Modality Therapy/adverse effects , Cytokine Release Syndrome/etiology , Drug Interactions , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immunotherapy/methods , Neoplasms/immunology
12.
Mucosal Immunol ; 15(2): 198-210, 2022 02.
Article in English | MEDLINE | ID: covidwho-1493071

ABSTRACT

As the COVID-19 pandemic is still ongoing, and considering the lack of efficacy of antiviral strategies to this date, and the reactive hyperinflammation leading to tissue lesions and pneumonia, effective treatments targeting the dysregulated immune response are more than ever required. Immunomodulatory and immunosuppressive drugs have been repurposed in severe COVID-19 with contrasting results. The heterogeneity in the timing of treatments administrations could be accountable for these discrepancies. Indeed, many studies included patients at different timepoints of infection, potentially hiding the beneficial effects of a time-adapted intervention. We aim to review the available data on the kinetics of the immune response in beta-coronaviruses infections, from animal models and longitudinal human studies, and propose a four-step model of severe COVID-19 timeline. Then, we discuss the results of the clinical trials of immune interventions with regards to the timing of administration, and finally suggest a time frame in order to delineate the best timepoint for each treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Immunomodulating Agents/administration & dosage , Immunosuppressive Agents/administration & dosage , Immunotherapy , SARS-CoV-2/drug effects , Animals , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Drug Administration Schedule , Host-Pathogen Interactions , Humans , Immunomodulating Agents/adverse effects , Immunosuppressive Agents/adverse effects , Immunotherapy/adverse effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Time Factors , Treatment Outcome
13.
Front Immunol ; 12: 740249, 2021.
Article in English | MEDLINE | ID: covidwho-1448730

ABSTRACT

Objective: To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods: Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results: We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion: This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.


Subject(s)
Antibodies, Viral/immunology , Arthritis, Rheumatoid/therapy , COVID-19 Vaccines/immunology , Immunotherapy/adverse effects , T-Lymphocytes/immunology , Aged , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Female , Humans , Interferon-gamma/immunology , Lymphocyte Count , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , Vaccines, Synthetic/immunology
14.
Front Immunol ; 12: 730414, 2021.
Article in English | MEDLINE | ID: covidwho-1376703

ABSTRACT

Antigen-specific immunotherapy (ASI) holds great promise for type 1 diabetes (T1D). Preclinical success for this approach has been demonstrated in vivo, however, clinical translation is still pending. Reasons explaining the slow progress to approve ASI are complex and span all stages of research and development, in both academic and industry environments. The basic four hurdles comprise a lack of translatability of pre-clinical research to human trials; an absence of robust prognostic and predictive biomarkers for therapeutic outcome; a need for a clear regulatory path addressing ASI modalities; and the limited acceptance to develop therapies intervening at the pre-symptomatic stages of disease. The core theme to address these challenges is collaboration-early, transparent, and engaged interactions between academic labs, pharmaceutical research and clinical development teams, advocacy groups, and regulatory agencies to drive a fundamental shift in how we think and treat T1D.


Subject(s)
Antigens/immunology , Autoimmunity , Diabetes Mellitus, Type 1/therapy , Immunotherapy , Translational Research, Biomedical , Animals , Biomarkers/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Humans , Immunotherapy/adverse effects
17.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: covidwho-1318086

ABSTRACT

Expanding the US Food and Drug Administration-approved indications for immune checkpoint inhibitors in patients with cancer has resulted in therapeutic success and immune-related adverse events (irAEs). Neurologic irAEs (irAE-Ns) have an incidence of 1%-12% and a high fatality rate relative to other irAEs. Lack of standardized disease definitions and accurate phenotyping leads to syndrome misclassification and impedes development of evidence-based treatments and translational research. The objective of this study was to develop consensus guidance for an approach to irAE-Ns including disease definitions and severity grading. A working group of four neurologists drafted irAE-N consensus guidance and definitions, which were reviewed by the multidisciplinary Neuro irAE Disease Definition Panel including oncologists and irAE experts. A modified Delphi consensus process was used, with two rounds of anonymous ratings by panelists and two meetings to discuss areas of controversy. Panelists rated content for usability, appropriateness and accuracy on 9-point scales in electronic surveys and provided free text comments. Aggregated survey responses were incorporated into revised definitions. Consensus was based on numeric ratings using the RAND/University of California Los Angeles (UCLA) Appropriateness Method with prespecified definitions. 27 panelists from 15 academic medical centers voted on a total of 53 rating scales (6 general guidance, 24 central and 18 peripheral nervous system disease definition components, 3 severity criteria and 2 clinical trial adjudication statements); of these, 77% (41/53) received first round consensus. After revisions, all items received second round consensus. Consensus definitions were achieved for seven core disorders: irMeningitis, irEncephalitis, irDemyelinating disease, irVasculitis, irNeuropathy, irNeuromuscular junction disorders and irMyopathy. For each disorder, six descriptors of diagnostic components are used: disease subtype, diagnostic certainty, severity, autoantibody association, exacerbation of pre-existing disease or de novo presentation, and presence or absence of concurrent irAE(s). These disease definitions standardize irAE-N classification. Diagnostic certainty is not always directly linked to certainty to treat as an irAE-N (ie, one might treat events in the probable or possible category). Given consensus on accuracy and usability from a representative panel group, we anticipate that the definitions will be used broadly across clinical and research settings.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/diagnosis , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Nervous System Diseases/diagnosis , Practice Guidelines as Topic , Consensus , Humans , Nervous System Diseases/chemically induced , Nervous System Diseases/immunology , Neurologists/statistics & numerical data , Oncologists/statistics & numerical data , Patient Care Team/organization & administration , Patient Care Team/statistics & numerical data
18.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1266400

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. COVID-19 has highly variable disease severity and a bimodal course characterized by acute respiratory viral infection followed by hyperinflammation in a subset of patients with severe disease. This immune dysregulation is characterized by lymphocytopenia, elevated levels of plasma cytokines and proliferative and exhausted T cells, among other dysfunctional cell types. Immunocompromised persons often fare worse in the context of acute respiratory infections, but preliminary data suggest this may not hold true for COVID-19. In this review, we explore the effect of SARS-CoV-2 infection on mortality in four populations with distinct forms of immunocompromise: (1) persons with hematological malignancies (HM) and hematopoietic stem cell transplant (HCT) recipients; (2) solid organ transplant recipients (SOTRs); (3) persons with rheumatological diseases; and (4) persons living with HIV (PLWH). For each population, key immunological defects are described and how these relate to the immune dysregulation in COVID-19. Next, outcomes including mortality after SARS-CoV-2 infection are described for each population, giving comparisons to the general population of age-matched and comorbidity-matched controls. In these four populations, iatrogenic or disease-related immunosuppression is not clearly associated with poor prognosis in HM, HCT, SOTR, rheumatological diseases, or HIV. However, certain individual immunosuppressants or disease states may be associated with harmful or beneficial effects, including harm from severe CD4 lymphocytopenia in PLWH and possible benefit to the calcineurin inhibitor ciclosporin in SOTRs, or tumor necrosis factor-α inhibitors in persons with rheumatic diseases. Lastly, insights gained from clinical and translational studies are explored as to the relevance for repurposing of immunosuppressive host-directed therapies for the treatment of hyperinflammation in COVID-19 in the general population.


Subject(s)
COVID-19 , Drug Repositioning , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Immunotherapy , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Comorbidity , Drug Repositioning/methods , Drug Repositioning/statistics & numerical data , HIV Infections/epidemiology , HIV Infections/immunology , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/statistics & numerical data , Humans , Immunocompromised Host/physiology , Immunotherapy/adverse effects , Immunotherapy/methods , Immunotherapy/statistics & numerical data , Mortality , Pandemics , Prognosis , Rheumatic Diseases/epidemiology , SARS-CoV-2/physiology , Transplant Recipients/statistics & numerical data
19.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1228897

ABSTRACT

COVID-19, the syndrome caused by the infection with SARS-CoV-2 coronavirus, is characterized, in its severe form, by interstitial diffuse pneumonitis and acute respiratory distress syndrome (ARDS). ARDS and systemic manifestations of COVID-19 are mainly due to an exaggerated immune response triggered by the viral infection. Cytokine release syndrome (CRS), an inflammatory syndrome characterized by elevated levels of circulating cytokines, and endothelial dysfunction are systemic manifestations of COVID-19. CRS is also an adverse event of immunotherapy (IMTX), the treatment of diseases using drugs, cells, and antibodies to stimulate or suppress the immune system. Graft-versus-host disease complications after an allogeneic stem cell transplant, toxicity after the infusion of chimeric antigen receptor-T cell therapy and monoclonal antibodies can all lead to CRS. It is hypothesized that anti-inflammatory drugs used for treatment of CRS in IMTX may be useful in reducing the mortality in COVID-19, whereas IMTX itself may help in ameliorating effects of SARS-CoV-2 infection. In this paper, we focused on the potential shared mechanisms and differences between COVID-19 and IMTX-related toxicities. We performed a systematic review of the clinical trials testing anti-inflammatory therapies and of the data published from prospective trials. Preliminary evidence suggests there might be a benefit in targeting the cytokines involved in the pathogenesis of COVID-19, especially by inhibiting the interleukin-6 pathway. Many other approaches based on novel drugs and cell therapies are currently under investigation and may lead to a reduction in hospitalization and mortality due to COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , Cytokine Release Syndrome/drug therapy , Immunotherapy/methods , Interleukin-6/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/pathology , Cytokine Release Syndrome/pathology , Humans , Immunization, Passive/methods , Immunotherapy/adverse effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/blood , Interleukin-6/blood , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/blood , COVID-19 Serotherapy
20.
Expert Rev Anticancer Ther ; 21(9): 1055-1066, 2021 09.
Article in English | MEDLINE | ID: covidwho-1221423

ABSTRACT

Background: Cancer patients are more vulnerable to Coronavirus disease-2019 (COVID-19) and have a higher risk of adverse outcomes than the general population. Therefore, it is necessary to evaluate whether anti-cancer therapies such as surgery, chemotherapy, immunotherapy, and targeted therapy will increase the severity and mortality of cancer patients with COVID-19.Methods: Relevant articles were retrieved from PubMed, Embase, Web of Science, Cochrane Library and China National Knowledge Infrastructure (CNKI). The search time was from December 1, 2019 to January 23, 2021. Meta-analysis was conducted using Revman 5.3 statistical software.Results: A total of 26 studies were included in this meta-analysis, involving 5571 cancer patients infected with SARS-CoV-2. Meta-analysis showed that surgery, chemotherapy, immunotherapy and targeted therapy were not associated with disease severity or mortality (107/688, OR =1.30, 95% CI[0.79, 2.13], P =0.30; 1956/2674, OR =1.27, 95% CI [0.95, 1.69], P =0.10; 342/1455, OR =1.20, 95% CI [0.90, 1.61], P =0.21; 503/1378, OR =0.92, 95% CI [0.72, 1.19], P =0.54, respectively).Conclusion: In cancer patients with COVID-19, anti-cancer therapy had no adverse effect on disease severity or mortality. Further research is necessary to determine the complex interrelationship between anti-cancer therapy, particularly chemotherapy, and COVID-19.


Subject(s)
COVID-19/complications , Neoplasms/therapy , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Neoplasms/pathology , Neoplasms/virology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL